Exam / Numerical Mathematics 1 / June 15th 2020, University of Groningen

A simple calculator is allowed.

You are allowed to use the material of the course (lecture notes, tutorials).

All answers need to be justified using mathematical arguments.

Total time: 3 hour 30 minutes (time includes upload of the PDF with your answers to Nestor) + 30 minutes (if special needs)

Remember: oral "checks" may be run afterwards.

Exercise 1 (9 points)

Consider a function $f(x) \in C^6([0, 2h])$. We define the numerical integration rule:

$$\tilde{I}(f) = \frac{h}{3} \big(f(0) + 4f(h) + f(2h) \big)$$

(a) |1.5| Show that

$$\tilde{I}(f) = 2hf(0) + 2h^2f'(0) + \frac{4}{3}h^3f''(0) + \frac{2}{3}h^4f'''(0) + h^5\left(\frac{1}{18}f''''(\xi_1) + \frac{2}{9}f''''(\xi_2)\right)$$

with $\xi_1, \xi_2 \in (0, 2h)$.

(b) 3 Show that

$$\tilde{I} - \int_0^{2h} f(u) du \le 0.6h^5 \max_{\eta \in [0,2h]} |f''''(\eta)|$$

- (c) 2 Show that the degree of exactness of the numerical integration rule is 3.
- (d) 1 Is this integration formula more or less accurate than the Simpson's rule? Justify your answer.
- (e) 1.5 Extend the numerical integration rule to build an integration rule over an interval [a, b] using two subintervals of length $\delta = (b a)/2$. Give an error bound for this new rule.

Exam / Numerical Mathematics 1 / June 15th 2020, University of Groningen

A simple calculator is allowed.

You are allowed to use the material of the course (lecture notes, tutorials).

All answers need to be justified using mathematical arguments.

Total time: 3 hour 30 minutes (time includes upload of the PDF with your answers to Nestor) + 30 minutes (if special needs)

Remember: oral "checks" may be run afterwards.

Exercise 2 (9 points)

Consider the problem: Find x^* such that $f(x^*) = 0$ solved via the Newton iterations

$$x^{(k+1)} = \phi(x^{(k)}) = x^{(k)} - f(x^{(k)}) / f'(x^{(k)})$$

- (a) 2 Show that if $f(x) = (x x^*)^m g(x), m > 0, g(x^*) \neq 0$, then $\phi'(x^*) = 1 1/m$.
- (b) |1.5| Using Newton iterations for finding the root of $f(x) = x^3$ leads to the following iterands

k	$x^{(k)}$
0	15.0000
1	10.0000
2	6.6667
3	4.4444
4	2.9630
5	1.9753

Compute the convergence order of these iterations and explain the obtained value using the theory studied in the course.

- (c) 1 Propose a new iteration function h(x), by modifying $\phi(x)$, such that $h'(x^*) = 0$
- (d) 1.5 Using the modified iteration function h(x), perform two iterations to approximate the root of x^3 , with $x^{(0)} = 15$. Explain the difference in the convergence order with respect to the standard Newton iterations.

Consider solving the linear system of equations Ax = b, with $A \in \mathbb{R}^{n \times n}$, using the following iterative procedure

$$x_k = x_{k-1} + \alpha \left(b - A x_{k-1} \right), \quad k \ge 1,$$

with

$$A = \begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

- (e) 2 Is it possible to choose a constant value of α such that the Richardson iterations converge? Justify your answer just by recalling the proofs studied in the course.
- (f) [1] In case you answered "yes" in the previous question, give a value of α that makes the iterations converge. If you answered "no", re-write the linear system (such that the solution is the same) so you can pick a value of α for making the solutions converge.

Exam / Numerical Mathematics 1 / June 15th 2020, University of Groningen

A simple calculator is allowed.

You are allowed to use the material of the course (lecture notes, tutorials).

All answers need to be justified using mathematical arguments.

Total time: 3 hour 30 minutes (time includes upload of the PDF with your answers to Nestor) + 30 minutes (if special needs)

Remember: oral "checks" may be run afterwards.

Exercise 3 (9 points)

Consider the system of ODEs for the functions d(t), v(t):

$$\begin{cases} mv' = -k \exp(d)d - cv & v(0) = v_0 \\ d' = v - \gamma d, & d(0) = d_0 \end{cases},$$
(1)

with $k, c, \gamma > 0$.

(a) 2 Show that:

$$(v^2)' + g(d)(d^2)' \le 0$$

for some function g(d) > 0.

- (b) $\lfloor 1 \rfloor$ Discretize () in time using the β -method, and denote the discrete solutions by $d_n \approx d(t_n), v_n \approx v(t_n)$. Formulate the system of (possibly non-linear) equations for (d_{n+1}, v_{n+1}) as a vector root finding problem $T(d_{n+1}, v_{n+1}) = 0$, and give the specific form for T. Assume $t_{n+1} = t_n + h, h > 0$.
- (c) 3 Write down the Newton iteration for computing the (k + 1)-st iterand $d_{n+1}^{k+1}, v_{n+1}^{k+1}$ from the k-th iterand d_{n+1}^k, v_{n+1}^k . Give specific expressions for the vectors and matrix involved, but you do not need to explicitly invert any matrix.
- (d) 3 Consider now the system of ODEs:

$$X'(t) = AX(t), \quad X(0) = X_0 \neq 0,$$
 (2)

with

$$A = \begin{bmatrix} -1 & -1/2 \\ 1/2 & -2 \end{bmatrix}.$$

Discretize the ODE ((d)) using the β -method for $\beta = 0$. Then, determine h_{crit} such that $X_n \to 0$ (for any X_0) when $n \to \infty$ for $h < h_{crit}$.