Exam / Numerical Mathematics 1 / June 15th 2020, University of Groningen

A simple calculator is allowed.
You are allowed to use the material of the course (lecture notes, tutorials).
All answers need to be justified using mathematical arguments.
Total time: 3 hour 30 minutes (time includes upload of the PDF with your answers to Nestor) $+\mathbf{3 0}$ minutes (if special needs)
Remember: oral "checks" may be run afterwards.

Exercise 1 (9 points)

Consider a function $f(x) \in C^{6}([0,2 h])$. We define the numerical integration rule:

$$
\tilde{I}(f)=\frac{h}{3}(f(0)+4 f(h)+f(2 h))
$$

(a) 1.5 Show that

$$
\tilde{I}(f)=2 h f(0)+2 h^{2} f^{\prime}(0)+\frac{4}{3} h^{3} f^{\prime \prime}(0)+\frac{2}{3} h^{4} f^{\prime \prime \prime}(0)+h^{5}\left(\frac{1}{18} f^{\prime \prime \prime \prime}\left(\xi_{1}\right)+\frac{2}{9} f^{\prime \prime \prime \prime}\left(\xi_{2}\right)\right)
$$

with $\xi_{1}, \xi_{2} \in(0,2 h)$.
(b) 3 Show that

$$
\tilde{I}-\int_{0}^{2 h} f(u) d u \leq 0.6 h^{5} \max _{\eta \in[0,2 h]}\left|f^{\prime \prime \prime \prime}(\eta)\right|
$$

(c) 2 Show that the degree of exactness of the numerical integration rule is 3 .
(d) 1 Is this integration formula more or less accurate than the Simpson's rule? Justify your answer.
(e) 1.5 Extend the numerical integration rule to build an integration rule over an interval $[a, b]$ using two subintervals of length $\delta=(b-a) / 2$. Give an error bound for this new rule.

Exam / Numerical Mathematics 1 / June 15th 2020, University of Groningen

A simple calculator is allowed.
You are allowed to use the material of the course (lecture notes, tutorials).
All answers need to be justified using mathematical arguments.
Total time: 3 hour 30 minutes (time includes upload of the PDF with your answers to Nestor) +30 minutes (if special needs)
Remember: oral "checks" may be run afterwards.

Exercise 2 (9 points)

Consider the problem: Find x^{*} such that $f\left(x^{*}\right)=0$ solved via the Newton iterations

$$
x^{(k+1)}=\phi\left(x^{(k)}\right)=x^{(k)}-f\left(x^{(k)}\right) / f^{\prime}\left(x^{(k)}\right)
$$

(a) 2 Show that if $f(x)=\left(x-x^{*}\right)^{m} g(x), m>0, g\left(x^{*}\right) \neq 0$, then $\phi^{\prime}\left(x^{*}\right)=1-1 / m$.
(b) 1.5 Using Newton iterations for finding the root of $f(x)=x^{3}$ leads to the following iterands

k	$x^{(k)}$
0	15.0000
1	10.0000
2	6.6667
3	4.4444
4	2.9630
5	1.9753

Compute the convergence order of these iterations and explain the obtained value using the theory studied in the course.
(c) 1 Propose a new iteration function $h(x)$, by modifying $\phi(x)$, such that $h^{\prime}\left(x^{*}\right)=0$
(d) 1.5 Using the modified iteration function $h(x)$, perform two iterations to approximate the root of x^{3}, with $x^{(0)}=15$. Explain the difference in the convergence order with respect to the standard Newton iterations.

Consider solving the linear system of equations $A x=b$, with $A \in \mathbb{R}^{n \times n}$, using the following iterative procedure

$$
x_{k}=x_{k-1}+\alpha\left(b-A x_{k-1}\right), \quad k \geq 1
$$

with

$$
A=\left[\begin{array}{ll}
2 & -1 \\
1 & -3
\end{array}\right], b=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(e) 2 Is it possible to choose a constant value of α such that the Richardson iterations converge? Justify your answer just by recalling the proofs studied in the course.
(f) 1 In case you answered "yes" in the previous question, give a value of α that makes the iterations converge. If you answered "no", re-write the linear system (such that the solution is the same) so you can pick a value of α for making the solutions converge.

Exam / Numerical Mathematics 1 / June 15th 2020, University of Groningen

A simple calculator is allowed.
You are allowed to use the material of the course (lecture notes, tutorials).
All answers need to be justified using mathematical arguments.
Total time: 3 hour 30 minutes (time includes upload of the PDF with your answers to Nestor) +30 minutes (if special needs)
Remember: oral "checks" may be run afterwards.

Exercise 3 (9 points)

Consider the system of ODEs for the functions $d(t), v(t)$:

$$
\begin{cases}m v^{\prime}=-k \exp (d) d-c v & v(0)=v_{0} \tag{1}\\ d^{\prime}=v-\gamma d, & d(0)=d_{0}\end{cases}
$$

with $k, c, \gamma>0$.
(a) 2 Show that:

$$
\left(v^{2}\right)^{\prime}+g(d)\left(d^{2}\right)^{\prime} \leq 0
$$

for some function $g(d)>0$.
(b) 1 Discretize () in time using the β-method, and denote the discrete solutions by $d_{n} \approx$ $d\left(t_{n}\right), v_{n} \approx v\left(t_{n}\right)$. Formulate the system of (possibly non-linear) equations for $\left(d_{n+1}, v_{n+1}\right)$ as a vector root finding problem $T\left(d_{n+1}, v_{n+1}\right)=0$, and give the specific form for T. Assume $t_{n+1}=t_{n}+h, h>0$.
(c) 3 Write down the Newton iteration for computing the $(k+1)$-st iterand $d_{n+1}^{k+1}, v_{n+1}^{k+1}$ from the k-th iterand d_{n+1}^{k}, v_{n+1}^{k}. Give specific expressions for the vectors and matrix involved, but you do not need to explicitly invert any matrix.
(d) 3 Consider now the system of ODEs:

$$
\begin{equation*}
X^{\prime}(t)=A X(t), \quad X(0)=X_{0} \neq 0 \tag{2}
\end{equation*}
$$

with

$$
A=\left[\begin{array}{cc}
-1 & -1 / 2 \\
1 / 2 & -2
\end{array}\right]
$$

Discretize the ODE ((d)) using the β-method for $\beta=0$. Then, determine $h_{\text {crit }}$ such that $X_{n} \rightarrow 0$ (for any X_{0}) when $n \rightarrow \infty$ for $h<h_{\text {crit }}$.

